Evolutionary Dynamics of Pathoadaptation Revealed by Three Independent Acquisitions of the VirB/D4 Type IV Secretion System in Bartonella
نویسندگان
چکیده
The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation.
منابع مشابه
Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diver...
متن کاملNew perspectives into bacterial DNA transfer to human cells.
The type IV secretion system (T4SS) VirB/D4 of the facultative intracellular pathogen Bartonella henselae is known to translocate bacterial effector proteins into human cells. Two recent reports on DNA transfer into human cells have demonstrated the versatility of this bacterial secretion system for macromolecular substrate transfer. Moreover, these findings have opened the possibility for deve...
متن کاملA bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these tie...
متن کاملA new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens.
Two DNA transfer systems encoded by the tumor-inducing (Ti) plasmid have been previously identified in Agrobacterium tumefaciens. The virB operon is required for the transfer of transferred DNA to the plant host, and the trb system encodes functions required for the conjugal transfer of the Ti plasmid between cells of Agrobacterium. Recent availability of the genome sequence of Agrobacterium al...
متن کاملBartonella henselae engages inside-out and outside-in signaling by integrin β1 and talin1 during invasome-mediated bacterial uptake.
The VirB/D4 type IV secretion system (T4SS) of the bacterial pathogen Bartonella henselae (Bhe) translocates seven effector proteins (BepA-BepG) into human cells that subvert host cellular functions. Two redundant pathways dependent on BepG or the combination of BepC and BepF trigger the formation of a bacterial uptake structure termed the invasome. Invasome formation is a multi-step process co...
متن کامل